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Abstract

Multilingual large language models (LLMs) have demonstrated strong performance in cross-
lingual tasks; however, their ability to incorporate context across diverse languages remains
underexplored. This paper proposes a Context-Aware Multilingual Transformer (CAMT)
architecture that integrates dynamic context routing, semantic alignment layers, and cultural
knowledge embeddings to enhance multilingual understanding. Experiments conducted using
the FLORES-200 and XNLI datasets show that CAMT improves context retention by 12.4%,
cross-lingual consistency by 9.8%, and cultural disambiguation by 7.1% compared to
baseline mT5 and XLM-R models. Results highlight the importance of contextual cues in

multilingual communication and underline the potential for building globally robust LLMs.
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1. Introduction

Large Language Models (LLMs) such as GPT, mT5, and XLM-R have achieved impressive

multilingual reasoning capabilities. However, these models often exhibit issues such as:
e Loss of context when transitioning between languages

e Semantic drift in low-resource languages
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e Cultural ambiguity in idioms, metaphors, and symbolic expressions
o Inconsistent meaning preservation in long-context tasks

Multilingual understanding is not only a function of translation accuracy but also of
contextual adaptation, meaning the ability to interpret semantic cues relative to culture,

syntax, and discourse structure.
1.1 Research Gap
Current LLMs:
o Focus on token-level alignment rather than context-level alignment
e Treat context uniformly across languages
o Fail to model language-specific pragmatics
1.2 Research Contribution
We propose CAMT: a Context-Aware Multilingual Transformer featuring:

1. Dynamic Context Routing (DCR) — adjusts attention weights based on language-

specific context markers
2. Semantic Alignment Layer (SAL) — aligns cross-lingual embeddings dynamically

3. Cultural Knowledge Embeddings (CKE) — integrates structured cultural cues

2. Related Work

2.1 Multilingual Transformers
o« mBERT (Devlin et al., 2020)
e XLM-R (Conneau et al., 2021)
e mT5 (Xue et al., 2022)

These models excel in multilingual tasks but do not incorporate cultural or context-awareness

modules.

2.2 Context Modeling
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Prior work has applied:
e Global attention mechanisms
e Memory-augmented networks
e Retrieval-augmented generation

But none have integrated cross-lingual context adaptation.

3. Proposed Method: CAMT Architecture

Figure 3.1: CAMT Architecture Overview
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CAMT Architecture consisting of thre major components: DCR, SAL,
and CKE, integrated with Transformer Layers

3.2 Dynamic Context Routing (DCR)
o Detects language-specific signals (particles, honorifics, idioms)
e Adjusts attention heads for context-heavy languages (e.g., Japanese, Hindi)
3.3 Semantic Alignment Layer (SAL)
e Aligns contextual embeddings using cross-lingual contrastive learning
e Reduces semantic drift in low-resource languages
3.4 Cultural Knowledge Embeddings (CKE)
Encodes:
e Idiomatic expressions
e Cultural references

¢ Common discourse structures
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e Pragmatic markers
These embeddings were built from parallel cultural corpora.
4. Experimental Setup

4.1 Datasets Used

Dataset Size Purpose

FLORES-200 843k sentences Translation & context retention
XNLI 5,000 entries  Natural Language Inference
BBC Multilingual News 2.2M Real-world context alignment
4.2 Baseline Models

e mT5-base
e XLM-R large
e GPT-3.5 multilingual test baseline
4.3 Evaluation Metrics
e Contextual Consistency Score (CCS)
e Cross-lingual Semantic Retention (XSR)
o Cultural Disambiguation Accuracy (CDA)

¢ BLEU and COMET scores

5. Results and Analysis
5.1 Quantitative Results

Table 1. Model Performance Comparison

Model CCS 1 XSR 1 CDA 1 COMET 1
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Model CCS 1 XSR 1 CDA 1 COMET 1
mT5-base 724 68.1 593  0.836
XLM-R 749 702 617 0.845
GPT-3.5 782 744 638 0.862

CAMT (ours) 88.0 84.2 70.9 0.901

Figure 5.2: Performance Gain Over Baselines

2 75% M T5-base
m|m XLM-R

g -, XLM-R
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5.3 Qualitative Examples

Example: Idiom Understanding

Input  (Hindi): '"98 o A ¥ §d H I\ Ul

(Literal: “He was talking to the sky”—meaning “He was very tall.”)
Model Output

mT5 “He was talking to the sky.” (literal)

GPT-3.5 “He was speaking very loudly.”

CAMT “He was extremely tall.”

Example: Cultural Disambiguation
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Input (Japanese): “ZERZFHL DA KETZ, ” (Cultural meaning: “Reading the room is

important.”)

Model Interpretation

XLM-R “Understanding the air is important.”
GPT-3.5 “Understanding the atmosphere is important.”

CAMT “Itis important to understand social context.”

6. Discussion
CAMT's results demonstrate:
o Improved context retention in languages with rich pragmatic cues (Hindi, Japanese)
o Better semantic alignment for low-resource languages
e More accurate interpretation of cultural expressions
However:
o Training requires a high-quality cultural corpus

e Architecture is computationally heavier than standard mT5

7. Conclusion

This research introduces CAMT, a context-aware multilingual architecture that significantly
enhances cross-lingual understanding, cultural reasoning, and semantic consistency. The
proposed system demonstrates strong potential for global applications such as multilingual

chatbots, translation engines, and cultural adaptation systems.
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